
STGT Program"
Ada Coding and

Architecture
Lessons Learned

N94-11437

Paul Usavage and Don Nagurney

GE Management and Data SystemsEngineering,

P.O. Box 8048, Phila. PA, 19101

Phone: (215) 354-3165

Fax: (215) 354-3177

STGT (Second TDRSS Ground Terminal) is curront/y halfway

through the System Integration Test phase (Level 4 Testing). To

date, many software architecture and Ada language issues

have been encountered and solved. This paper, which is a

transcript of the presentation at the December 3rd meeting,

attempts to define these lessons plus others/earned regarding

software project management and risk management issues,

training, performance, rouse, and reliability. Observations are

included regarding the use of particular Ada coding

constructs, software architecture trade-offs during the

prototyping, development and testing stages of the project and

dangers inherent in parallel or concurrent Systems, Software,

Hardware and Operations Engineering.

SEL-92-004 page 366

Introduction

STGT is the first major Ada development

program for M&DSO, which has devel-

oped other large ground stations in FOR-

TRAN and C. In addition to the use of Ada,

GE Management and Data Systems Oper-

ations faced other software development

risks in the implementation of STGT. Some

of these risk items are itemized below:

• A heavily distributed system (> 30

processing nodes and > 100 worksta-

tions in previous ground stations)

• High real-time system content (vs.

40% real-time, 60% batch process-

ing)

• First on a DEC/VAX platform (vs. IBM
mainframes and Sun/Unix worksta-

tions)

• High-availability/high-reliability archi-

tecture (99.99% availability required)

• High hardware content (> 350 racks

of ground communication equipment)

• Heavily automated, X-Windows,
workstation-based user interface

• First artificial intelligence (AI) based
hardware fault detection/fault isolation

• Short development lead time (3 years

from start to delivery)

Risk items like the above don't usually

translate into the impossible, they just have

a way of eating into cost and schedule mar-

gins. Several steps were taken to mitigate
the dsks involved. An Ada Core Team was

formed prior to program startup to develop

language expertise. An Ada training pro-

gram was developed and its completion

required for all software engineers

employed on the program. Despite these

efforts, many lessons were learned on the

job through prototyping, development and

testing. This paper is intended to be a

• chronicle of these risk issues and (hopeful-

ly) their resolutions.

Project Composition

The Second TDRSS (Tracking and Data

Relay Satellite System) Ground Terminal

(STGT) is a new ground station and an up-

grade to an existing ground station in White

Sands, New Mexico. These ground sta-

tions will provide command and data com-
munications from user control facilities

through the TDRS, and on to the various

user satellites and the Space Shuttle.

The breakdown of thousands of source •

lines of code developed for each Comput-

er Software Configuration Item (CSCI) for

the project is shown •in Table 1.

2

SEL-92-004 page 367

CSCI

TTC (Satellite Control)

DIS (Communication)

USS (Ground Equip.)

EXC (Scheduling)

iWKS (Workstation Inter-
face)

COM (Infrastructure)

MDS (Development Env.)

SIM (Simulators)

Totals

Size (Lines of Code_

100k

76

71

26

152

Thousands of Hours1 LOC / Hour

115k 0.86

79 0.96

58

23

56

23 37

100 36

4O 4O

588 444

1.22

1.13

2.70

0.62

2.77

1.00

1.32

Note:
1 - Requirements Analysis through Software Test

Descriptions of the CSCIs are as follows:

"I-I'C:

Tracking, Telemetry and Command

CSCi, responsible for controlling the
Tracking and Data Relay Satellites

(TDRS) used by NASA to relay user
satellite and space shuttle telemetry
and command data. Responsible for

commanding the satellite, monitoring
its health, and controlling the ground

antenna in order to point at the satel-

lite.

DIS:

Data Interface Subsystem, responsi-

ble for interfacing with the NASA com-
munication network, accepting sched-

uling orders from NASA, and

switching the inputs and outputs from
the ground station to data links be-
tween STGT and the other NASA Io-

cations.

USS:

User Services Subsystem, responsi-

ble for controlling most of the ground

communications equipment (GCE)

and supporting communications to
the TDRS and to various user satel-

lites.

• EXC:

Executive, responsible for scheduling

of a single Space to Ground Link Ter-

minal (SGL'r) controlling a single
TDRS satellite. There will be six

SGLTs overall in the two ground sta-

tion installations.

• WKS:

Workstation, responsible for operator
interface, including intelligent graphi-

cally-oriented displays, operation
alert messages and operator com-

manding capabilities.

• COM:

Common Run-time Environment,

provides common capabilities across
all computers including communica-
tions within and between computers,

data logging, startup/shutdown/
failover control, and device driver in-

terfaces.

SELo92-004 page 368

• MDS:

Maintenance and Development Sub-

system, provides COTS tools for de-

velopment and maintenance environ-
ment, database displays/editors, and

configuration management software.

• SIM:

Simulations, provides simulations of
the NASA scheduling interface,

ground hardware, and the TDRS.
Simulators are used in testing, train-

ing and problem investigation.

Software Architectural Issues

Architectural Reuse

STGT attempted a high level of reuse and

incorporated reuse into its architecture.

and in many ways succeeded. Attempts

were made in object-oriented design,

some of which succeeded in providing reli-

able, understandable, reusable products,

and some of which only caused major

headaches. Those that were problematic

were usually related to lack of understand-

ing of the scope and breadth of the situa-
tions in which the code would be reused,

the computers on which the code would

run, and the environments on these com-

puters. For example, code reused on a
workstation found itself in a rather different

environment than on the large VAXes, due

to lack of availability of large local data-

bases.

Reuse was attempted on both large and
small scales. Small-scale reuse was of

course more easily planned than large-

scale reuse. Large-scale reuse was more

likely to result in complicated error condi-

tions, where different subsystems (and

their engineers and programmers) wanted

to operate in different ways but were con-
strained by identical implementations due

to code reuse.

Ada Reuse

In the early days we had "reuse evange-

lists" who proposed massive, complex,

self-initializing generics for everyone. Al-

most every case that was ever implem-

ented was later disabled, deleted, gutted

or otherwise rewritten. Generics proved

very difficult to debug using a source-level

interactive debugger, relatively slow to ex-

ecute in real-time, and very hard to write.

Elaboration time-initialization code was

also difficult to debug and prone to excep-

tion handling difficulties. Simple generics,

on the other hand, were often very effective

and easy to reuse. Complicated generics

(including generics within generics within

generics) were seldom worth the cost un-

less the designer and sole user were one-

and-the-same, and the designer was well

above-average in terms of proficiency and

experienced at writing generics. That's not

to say that we didn't have proficient pro-

grammers. With 100 or more program-

mers, just don't expect everyone to be a

generics expert and design generics well.

Our best use of complex Ada generics in-

volved data logging and retrieval software.

This software utilized a high number of ge-

nerics starting with primitive types (strings,

integers, reals) and built up by instantiation

4

SEL-92-004 page 369

into complex, compound record struc-
tures in various sizes and formats. This

worked very well, provided a single desig-

ner/programmer was responsible for both

the generic capability and it's uses.

Other good choices for Ada generics were

design elements whic:h clearly had a high

degree of parallelism, such as our commu-

nications package which treated all mes-

sages the same, regardless of individual

message formats. These even utilized de-

clare blocks, which instantiated the generic

on-the-fly for differing sizes or other re-
cord discriminants based on run-time val-

ues. These met with good success and

surprisingly good performanc e on VAX
Ada. Poor choices included the hardware

simulators, which attempted a very high

degree of generics (> 50% of code was

within a generic) which suffered from se-

vere performance penalties and lack of

flexibility in dealing with specific hardware

behaviors.

Coding to a common source template is

actually a Iow-tech form of reuse that

should not be overlooked. It worked very

easily (as long as the template was correct)

and served to promulgate good examples

for coding and error-handling. Templates

were used for declaring, sending and re-

ceiving message objects. They worked

well, until limitations in the templates were

found. A more extensive effort in develop-

ing the template would have payed off

handsomely in our experience.

Avoid "Monolithic" Ada packages. Trying

to be all things to all people will most likely

be nothing to anybody. Thinking that ob-

ject-oriented design translates into "throw

everything into one package" is similarly

misguided. Use a layered approach in-

stead. Define a package with just type defi-

nitions. Then define a package that pro-

vides basic operations on these types.

Define higher-level packages as neces-

sary to define more complex operations,

building on lower-level packages. A care-

ful architecture like this can help you reap

big reuse benefits as new uses are found.

Following this approach allows different

programs to access the object at different

layers of abstraction. Some just need a

typedefinition. Others need basic routines

to manipulate the types. Some need ad-

vanced routines composed out of basic
routines. Others could benefit from auto-

matic initialization of objects at elaboration

time (tends to be very trouble-prone,

should be carefully controlled by a stan-

dards committee). All uses of a complex

object, especially potential future ones,

may suffer if the only view presented is a

single complete monolithic view. A pro-

gram wishing access to a type definition

ends up with pages of "hidden", unused

code and data, and maybe even automatic

creation/initialization of objects at startup

time, referencing databases defined on

one computer and not others.

Variable-length strings were another good

reusable package. We implemented them

with a generic package, pre-instantiated

sized to 256 characters. Use of a pre-ins-

tantiated package allowed easier sharing

of types. However, this also encouraged

SEL-92-004 page 370

waste (programmers were encouraged to

use 256-byte strings where only 16 char-

acters were necessary).

Ada Architecture issues

Error handling was our number-one archi-

tecture problem. We definitely could have

benefitted from better up-front design and

more prototyping. Ada tasks complicated

the error handling picture drastically.

There is a lot of functional overlap between

the capabilities provided by Ada excep-

tions and those provided by VAX/VMS

Condition handlers. There were points of

interference or undesirable interplay be-

tween the two as well. You need to design

error handling into all system service calls.

Know which exceptions are worth handl-

ing, and which you WANTto be unhandled

(because they show up obvious coding or

environment problems).

Taking advantage of the operating sys-

tem's capabilities for calling stack trace-

backs on unhandled exceptions, for ex-

ample, can provide lots of power for

debugging. These are especially useful if

integrated into the debugging environ-

ment, as is the case with most DECNAX

software.

Concurrency

Ada Tasks

Much fear was generated during early de-

sign phases concerning the trade-offs be-

tween concurrent operating system pro-

cesses, and concurrent Ada tasks. During

implementation, use was made of both

single and multiprocessor machines, with

varying results. Software testing and mod-

ification history have allowed us to con-

struct better guidelines for process versus

task trade-offs. In many cases, processes

were used as an aid to work breakdown

rather than based on strong architectural

need. In some cases these choices

caused problems later, and limited the

range of available solutions for require-

ment or design changes. Ada tasking

would have been more flexible.

However, increased use of Ada tasking

would have required a different develop-

ment support structure. This support

structure would have had to allow separate

development and testing of task-based

functional work pack.ages independently.

The tasks could then be integrated into a

single process resulting in a more reliable

system.

In general, tasks were well-used and
caused relatively few problems. Among

the problems were prioritization, blocking,

proliferation of tasks required to synchro-
nize between other tasks, and increased

rigor in defining/testing the tasking archi-

tecture. Tokens (Ada "private" objects

containing pointers and flags used in the

interface packages between application

and service layers) were used to define

message addresses. These later became

a problem since they were not designed to

be shared, yet were shared in some appli-

cation programs among various tasks.
The sheer number of tokens used in the

system prevented us from embedding a

SEL-92-004 page 371

task within all token types for synchroniza-

tion (because of the amount of memory

used for task stacks, etc.), but we later em-

bedded "token in-use" flags to help detect

instances of sharing. Earlier recognition of

the problem would have allowed a range of

more elegant solutions.

The following are some additional observa-

tions regarding Ada tasks:

• Task context switches are a LOT fast-

er than process context switches. If

you're thinking of adding more pro-
cesses, tasks are better. However,

processes are easier to split up the
work among multiple independent

programmers. Tasks in the same

process require more programmer
coordination during development.

• Tasks are like lawyers. If you have no

tasks, you probably won't need any.
However, once you have two tasks,

you will probably need another five or
ten more to handle coordination be-

tween those two tasks plus synchro-

nize any shared inputs, outputs, re-
sources, etc. This means that if you

start out thinking that you'll write a

program with a few tasks, you'll prob-

ably end up writing lots. However,

this didn't appear to have been a

problem. The number of tasks did

not affect performance as long as

they were event-driven. You may
have to spend more time maintaining

relative priorities of tasks as the num-
ber increases.

• We avoided PRAGMA TIME_SLICE,

since we understood it to add signifi-
cant overhead. We were successful

in avoiding it. Several times we were

tempted to use it to alleviate other
tasking problems, but it was never
absolutely necessary and in the end

was successfully avoided.

• Multiprocessor problems were en-
countered, which required us to use
PRAGMA SHARED and PRAGMA

VOLATILE, which are implementation

dependent. These relied on archi-
tecture-dependent features of VMS

processors. The features worked well
in our two-CPU environment.

• We would have liked to prioritize dif-

ferent entry points in the same task

(e.g. to handle the same type of ren-
dezvous, but from different sources),
but Ada doesn't allow it. We found a

kludgy way of doing it. Instead of at-

tempting reuse, we should have dupli-
cated the task code (i.e. via task

types) and prioritized them differently.

Maybe we did this because we were
attempting excessive reuse, or we
were afraid of proliferating tasks.

Simpler would have been better.

• We worried a lot about "fairness" of

tasking, however all fears appeared to

be groundless. If you're worried
about fairness of tasking, what you

really may be worried about is that

you need more CPU power. Or you

may have tasks polling when instead

you need to turn them around into an

interrupt-driven approach.

• Beware of non-reentrant servers, ser-

vices, etc. Accesses to Rdb, the rela-
tional database we used, had to be

serialized by routing all task's re-

quests through a single Rdb server
task (gateway)which in turn provided

SEL-92-004 page 372

the sole control of the Rdb server.

This is a fairly common problem inter-

facing with non-Ada facilities for
which you should watch. Our COTS

Graphical User Interface (GUI) non-
reentrancy problem was solved with

the opposite approach. We ran four

copies of it, one for each operator
window.

There was still some question for us

about what Delay 0.0 really did, or if it
was necessary. It was documented

as a way to break the execution of a

long,running task and allow a context
switch to another waiting task. When

we attempted to verify this behavior

through benchmarks however, we
met with mixed results. We eventually

opted not to use the feature. Instead

we broke problematic long-running
tasks into multiple shorter tasks.

We also had reports of problems with
the fairness of allocation of CPU time

among tasks. When we investigated
with benchmarks, however, all we

found were problems with the bench-
marks. For each case of purported

probems with Delay 0.0 and tasking
fairness, programmers who thought

they had a problem with an Ada fea-
ture were instead using too much
CPU time. The ultimate fix was to

rearchitect the program to respond to

events or Asynchronous System
Traps (ASTs) rather than poll.

Compile-time vs. Run-Time Binding

You can use unchecked_conversion

to convert between system.address

and object_access types. You'd bet-

ter be very careful when using this,

though. A LOT of errors were com-
mitted in this area. Need careful code

review and on-the-job indoctrination,

perhaps through programmer peer
group inspections/walkthroughs, etc.
Watch out for things like unintentional-

ly overlayed objects and other C code

type pointer errors.

Anytime you use access types or sys-
tem addresses in variables it opens

the door for memory leaks around al-

Iocation/deallocation.

The Ada compile-time binding of re-

cord types was an early problem

when data logging record types were

very volatile. Many low-worth recom-

pilations were performed. Configura-
tion management and test computer

system performance were impacted

by the need to accept the many new
executables images that were gener-
ated. A run-time-binding architecture

might have been better in these highly

volatile report-writing cases. Once
the formats stabilized, the structure

did provide for ease of checking.
Compilation tests for code impact to

changing interface or record format
become both routine and precise.

Message Passing Architectures

Ada Interface Definitions

Internal interface definitions, between

computers and software subsystems,

were captured in Ada. In most cases, re-

presentation clauses were not used. In-

stead the message record definition code

was reused in each subsystem. Software

configuration management mechanisms

8

SEL-92-004 page 373

ensured that interfaces were modified con-

sistently. This was reliable since all com-

puters used the same hardware architec-

ture and the same compiler.

Platform Dependencies

Operating System Dependencies

Many unknown, unforseen platform de-

pendencies cropped up during the devel-

opment and test phases. In many cases,

these problems were the most astounding

and difficult to predict of any we encoun-

tered. There is a high degree of functional

overlap between the Ada compiler/lan-

guage run time environment (VAX/VMS

Ada 2.2-41 at this writing) and the host/tar-

get operating system (VMS 5.5-1). This

overlap caused problems in error handl-

ing; Ada exception handling interfered with

the generation of otherwise automatic op-

erating system calling-tree tracebacks. It

also appeared in process management

(computer operators couldn't reliably can-

cel processes with some types of tasking

structures), and debugging (generics and

tasks increased difficulty of source-level

debugging and thus were unpopular with

programmers). While many of these are

platform-dependent, they point to the

overall problem of overlap between Ada's

functionality and the functionality of the op-

erating system upon which it's running. If

you're running on a bare-bones proces-

sor, or a primitive operating system, then

there may be little or no problem. Using a

sophistcated and feature-rich operating

system like VAX/VMS, on the other hand,

can lead to limitations and unforeseen

problems when you use Ada's advanced
features and the operating system's ad-

vanced features in the same program.

We ended up having our DEC consultants

write a sophisticated assembler routine

embedded in each executable which de-

tects unhandled exceptions in any task,

forces a traceback, and terminates the

image. This has provided us with vastly im-

proved turn-around time for fixing fatal er-

rors found during testing.

Some particulars we found:

• The VAX Ada Run Time Library dis-

ables certain features of VMS (like the

capability of a computer operator to
stop a process gracefully, unless

you've coded-in your own user-de-

fined exception handler and a means
to signal termination). Also, VAX

Ada's memory deallocation/stack un-

wind during exception propogation
interfere with VMS's capability to do a
call tree traceback, which would

otherwise have shown a stack dump

from the line raising the problem all

the way back up to the top of the pro-

gram. This was especially trouble-
some when some tasks failed due to

unhandled exceptions, (coding er-

rors), but other tasks and the process
as a whole, continued to function,

making it difficult to detect and isolate

the problem.

• Writing debug or error messages us-

ing Put_Une caused a performance

problem in real-time processes, when
all tasks in the process hang behind

an operating system output request

SEL-92-004 page 374

queued to the disk device. We
couldn't tolerate this in many of our
hard-real-time executables, so we

converted these into shared memory

messages between the real-time pro-

cesses and a lower priority server

process, who performed output on

behalf of the real-time processes.

We used tuned Record Management

Services (RMS) Input/Output instead
of vanilla Ada TEXT IO or SEQUEN-

m

TIAL IO. This was because of the

need for heavy-duty tuning, including

buffering control and management.

We implemented a Mixed I/O-like ca-

pability using discriminated records,
where each record in the file con-

tained its own embedded record for-

mat identifier. This worked quite well,

except when the formats were under

early development and changed of-
ten. Then backward compatibility of

current software and previously ar-
chived data files became tedious.

SHARED images (a sophisticated

VMS Feature) would have been good
to use in certain areas where reusable

code made up almost a Megabyte of
each executable image, but the inte-

gration with Ada was not smooth. By

the time we developed a good work-

ing approach we had to abandon it
because of the retrofit cost. This

might have helped Ada's perform-
ance some, in decreasing the

memory required. If it could have
been done earlier with benefits amor-

tized over more of the development

phase, it would have saved money

and time. We had initial misgivings
about the ability to debug an installed

shared image, which later appeared
to have been unfounded.

VMS has a very nice software pseu-

do-interrupt capability (Asynchronous

System Traps or ASTs). The Ada
run-time library uses these to do it's

own synchronization, and instead

converts each application AST into a
task rendezvous. As a result, running

Ada as a part of a "real" AST such as
in a call from a device driver written in

another language was a difficult prop-

osition (couldn't use tasking, perform

any I/O, etc.). However, the run time
libary's conversion of ASTs to tasks

(PRAGMA AST ENTRY) was quite ac-
cessible to programmers. Tasks
seemed to be quite easy (and even

natural) to use for this purpose. This

enabled anyone to make use of ASTs,

whereas without this we probably
would have had to restrict their use to

an elite group of the most experi-

enced programmers.

Make use of platform capabilities.

Don't be an Ada zealot, thinking you

have to write pure Ada code and du-

plicating functionality otherwise avail-
able more cheaply or efficiently in the

operating system (100% code porta-
bility wasn't an issue for us - and it

may not be for you either). Examples
are character and numeric utilities.

Just write good (portable) package

specs, and implement the bodies of
these in the most efficient manner,

even utilizing operating system ser-

vice calls or non-Ada utility packages.

This is especially appropriate on com-

plex instruction set computers (CISC)
like the VAX. You can always rewrite

10

SEL-92-004 page 375

the bodies for each new platform to

which you port. That way you've ad-

dressed performance, reusibility and
reduced risk while making good prog-

ress and leveraging the capabilities
and strong points of your underlying

platform.

COTS Dependencies and Integration

During the proposal phase of STGT we
identified several areas where Commer-

cial Off-The-Shelf (COTS) software could
be used. We then deleted costs based

on the difference between developing the

application from scratch and the cost of
the COTS product. However, the follow-

ing concerns arose:

We did not allocate necessary addi-

tional costs to continually evaluate

and incorporate periodic updates/up-

grades of these COTS products. This
turned out to be a big ticket item over
the life of STGT.

Purchase good quality COTS bind-

ings. This is a LOT of work. Availabil-
ity/maturity of Ada bindings should be

a significant discriminator during
COTS evaluations (e.g., XWindows/

Motif binding problems, Distributed

File Service (DFS) bindings, device
driver bindings, etc.). As usual, pro-

ductivity may be gained for many at
the expense of hard work by afew, or

by the purchase of a proper bindings.
Consider the trade-offs.

Performance

Ada Performance Characteristics

Many performance problems were en-

countered which required various mitiga-

tion approaches. Performance modelling

was only as good as the input received

(much guess work was necessary early on

in the life-cycle). This lead to big surprises

and varying types of late changes. Eventu-

ally larger CPUs and more memory were

purchased.

There appears to be a SERIOUS dichoto-

my in Ada between coding for perform-

ance and coding for what most consider to

be a "good" Ada style. "Good" Ada was

subject to our interpretation of the current
literature and to the lessons developed

during prototypes by the Ada Core Team.

What might be considered "good" Ada of

course will change over time. Examples

are:

• The generic string package was pre-
instantiated for (discriminated record

structures) of 256 bytes. This affords
maximum reusability and similarity,

but appears to waste memory and

disk space due in certain cases to

needlessly large structures.

• Proponents of "good" Ada often
stress deeply nested procedure calls

for modularity and reuse. "Fast" Ada

is often relatively flat, with a shallow

call depth.

• "Good" Ada makes maximum use of

local variables. "Fast" Ada allocates

11

SEL-92-004 page 376

variables once in package bodies,

then carefully reuses them within
package procedure and function bo-
dies.

• "Good" Ada makes maximum use of

Generics. "Fast" Ada avoids complex

generics.

• Good Ada makes minimum use of im-

plementation-dependent PRAGMAs.
Fast Ada utilizes some PRAGMAs,

e.g., PRAGMA ELABORATE to force
elaboration of packages before the
routines are called for real-time ex-

ecution.

• As a result of the apparent quandry

between "good" and "fast" Ada, it
seems that Ada right out of the ob-

ject-oriented training book can be
quite slow. You either need to allocate

a bigger CPU, know very accurately
the performance characteristics in ad-
vance, or plan on a tuning phase to

increase the performance of your
code once it's written.

Schedule pressures made us opt for the

quickest solutions in most cases, that is,

larger CPU's. We had some success in op-

timizing Ada for performance. In some

cases the re-coding or reimplemetation of

a component saved 50-100% of CPU or

Memory resources. In one case it saved a

factor of 5X CPU for a compute-intensive

satellite orbit prediction function.

Configuration Management

Aria Configuration Management

• Ada dependencies are GRAPHS,

most library structures/directory hier-

archies are TREES. Therefore, if you

lock yourself into a library structure
that mimics the Ada dependency

structure, you'll be disappointed

eventually. We used a simple tree of
SHARED code at the top, with CSCIs

or subsystems below.

Sublibraries were used versus the

VAX Ada Compilation System (ACS)
ENTERED units. This allowed auto-

matic recompilation for dependent
units when root units changed. The

downside was that massive recompi-
lations were forced when not all de-

pendent libraries (and groups using
those libraries) were ready to see the

change. An alternative approach

might have been to develop a tool for
automatically re-entering changed

units into dependent libraries. That
also could have allowed for library de-

pendencies more complicated than a
tree.

We used separate/duplicate libraries
to reflect differing levels of software

test maturity. For instance, we had
one shared set of libraries in which

developed code. We only updated

the reused components of that library

once a week. People affected by in-

terface changes only had to support

(or suffer) changes once a week.

We could have used hierarchical li-

braries for test, but the computational

requirements were too great. Our de-

velopment CPU resources were never

great enough to compile the same
source code multiple times for differ-
ent hierarchical libraries supporting

different test maturities. Consequent-

12

SEL-92-004 page 377

ly all tests were forced to the same
maturity - fresh from the programmer.

We had to write a program to extract
a cross-reference containing "where-
used" information. ACS did not pro-

vide this information.

Ada Compilation Performance

We did a LOT of work to improve compila-

tion speed. Some of the things we did

were:

• Faster CPUs - went from VAX 8250s

(1.5 MIPS) to VAX 6610s (25 MIPS).

• More memory - from 64 to 256 Mb

• Tuning of system quotas, batch

queues etc.

• RAM DISK and/or semiconductor disk

for shared code Ada library (most crit-

ical compilation library)

• Spread I/O over multiple disks to re-
duce bottlenecks

• We didn't persue but maybe should

have experimented further with the ef-
fects of smaller and larger directory/li-

brary sizes on compilation speed.

Ada Compiler

• We found relatively few bugs. Most

were in code generation, a few for

floating point types and others which

optimized away variables or code.
One involved different Ada library unit

interfaces depending on whether
code was compiled in debug or non-

debug. All were resolved in quite
good order by excellent DEC support.
The lesson was that compiler maturity

(for VAX/VMS Ada) was not a risk fac-
tor. We also learned that run-time (vs.

compile-time) bindings for certain

rapidly and persistantly changing
functions would have been a much

better design from an operational and

CM point of view.

On the other hand, the maturity of
ACS was less evident. We have had

numerous problems and "features".

A good Ada Program Support Envi-
ronment would be greatly appre-
ciated. We wrote 30,000 lines of

"tool" and configuration management

scripts. This is significantly more than

we anticipated supporting. A good
COTS tool available in a timely man-

ner would have been a big productiv-

ity enhancement.

The design of our parent libraries and
sublibraries were important. We

found ourselves re-creating libraries

because library parent/child relation-

ships were hard-coded rather than

logical. We redid all libraries with
PSEUDO-DEVICE Iogicals so that

successive changes were less painful.

Project Management

Equally as important as the Ada lessons

learned were the lessons we learned in

managing and controlling a large Ada soft-

ware development effort. Some of these

lessons are:

Standards

• Our Software Standards and Practic-

es Manual (SSPM) was HUGE. Far

too big to be understood or enforced.

13

SEL-92-004 page 378

• Should have made better use of auto-

mated standards checkers or pretty-

printer tools.

• Should have tailored the Language

Sensitive Editor (LSE) more aggres-

sively for our local standards and in-
cluded more templates

• Standards should be issued, proven,

taught, understood, reviewed, repro-
ven, and well documented before any

code is written.

Architecture and Schedule

Allocate the Right CSCIs. We

changed the allocation of cSCrs ear-
ly in the development effort. Changes

• (reallocations) are difficult to make.

Avoid Early Split into CSCI Production

Groups. We set up a Work Break-

down Structure (WBS) and Manage-
ment structure on day one. Therefore

shifting of work from CSCI to CSCI
became a continuous struggle. Work

overall system architecture first before

parochialism sets in. Set up a mech-
anism to provide for the overall proj-

ect good at expense of an individual

group.

Avoid the pressure to accelerate
schedules. Believe the "Rule of Tens"

(errors found in a later phase take 10
times longer to fix). Missed goals can

not be made up. Insist on operation's

concepts and equipment (mission

equipment) designs prior to software

designs.

View interfaces as a "contract" not as

a goal. Interfaces that change are

painful.

• Understand tools required and decide

on their use well in advance of needs.

We developed Configuration Manage-
ment DCL on-the-fly, did not under-

stand the complexities of Ada CM,
and shared interface packages (which

are a good idea, but caused massive

recompiles). Understand and plan the
role of tools throughout the whole life-

cycle.

• Define and stick to a fixed methodolo-

gy. We were guilty of making it up as
we go. Much of the heritage we had
from our Ada Core Team did not scale

up into larger development efforts.
Tools did not easily transition between

phases.

• Do more prototyping - especially for

performance. Make performance esti-
mates based on Executed Lines Of

Code (ELOCs) from actual prototypes
rather than from Lines Of Code

(LOCs) written or predicted to be writ-
ten. Consider living (non_throwaway)

prototypes for broadly used "infra-
structure" code.

• Use the right language for the right
function. We made some changes to

use macro assembler in some critical

high frequency applications. Device

driver type functions were very slow in
Ada as was the high use interprocess

communication processes.

• Put Some Teeth into allocating and

enforcing performance requirements.
We allocated only very high level re-

quirements to the CSCIs for CPU and

Memory performance. These were
not allocated to lower level compo-
nents and were therefore untestable

and unenforceable.

14

SEL-92-004 page 379

• Do Code Walkthrus - set aside a

team to execute. We relied on peer
reviews of code. This became a sig-

nificant schedule pressure on the
CSCI who concentrated more on their

own efforts then in a thorough review
of another CSCIs code.

• Understand and don't underestimate
the entire domain. Understand the

performance aspects of the COTS

products and prototype their use. Er-
rors in COTS are harder to fix be-

cause of 3rd party involvement. Work
with COTS can begin earlier since de-

sign effort is usually not required. The

effects of the operating system and

hardware platform are significant, pro-

topying and an early start is recom-
mended.

• Know what you are buying and where

to use it. For Example, Booch com-

ponents were excellent at improving

productivity. However know their per-
formance characteristics before de-

ciding where to use them and other
similar COTS software.

Hire Experts - utilize vendor consul-
tants. On site expertise is the best

way to fix problems and to get prefer-
ential access to vendor guru's and

other experts. Often you fix problems
before they happen, since consultants

can help you with that most difficult

assessment, determining what it is

that you don't know.

These Lessons Learned represent only a

small subset of the potential data that can

be gleaned from GE's experience on

STGT. The main lesson to take away from

this paper is that the language, platform,

COTS products, tools, etc. are just a
means to an end and in themselves are re-

sponsible for neither success nor failure.

15

SEL-92-004 page380

@ STGT Ada Lessons Learned

Second "I"D_S
GroundTerminal

]Dec 2-3, 1992

NASA Goddard Software Engineering Laboratory

Software Engineering Workshop

STGT Project

Ada Lessons Learned

Tod KshrU

Bill Mamley

Scott Brown
Brian Buman

Paul U88vqe
Don Naprney

C_tN1

@ STGT Ada Lessons Learned

Agenda Second "I'DRSS
GroundTerminal

Dec 2-3, 1992

Project Overview

Software Configuration

Software Metrics

Ada Project Management Lessons Learned

- Project Schedule/Structure

- General Issues

- Performance/Sizing

- Reusability

Ada Lessons Learned

- Generics

- Tasking

- COTS/Platform Dependencies

- Package Structuring/Record Formats

- Exceptions
SEL-92-004 page 3_ki_t2

@ STGT Ada Lessons Learned

Project Overview Second TDRSS
GroundTerminal

2-3. 1992

J
GE I

@ STGT Ada Lessons Learned

Software Configuration Second TDR,._
GroundTerminal

Dec 2-3, 1992

IwIt_ OSCl I I

K-band TrO

COM CSCI

DIS ADPE

DIS CSCI ICOM CSCI

SGLT 1 EXEC ADPE

EXC CSCI [COM CSCI

USS SA1

USS P.,SCI

COM CSCI II
COMCSCI
DIS CSCI
EXC CSCI
USS CSCI
TTC CSCI
WKS CSCI
SIM CSCI
MDS CSCI

uss SA2

USS CSCI

COM CSCI

USSIdA

Common Sendoes
NCC Interface
SGI.TScheduang
Equipment CMD/MON
"rDRSIAnlenna Oonlml
Operator Interl_e
SM'rF 81muladion
SMTI: Tools

SEL-92-004 page 382 Onatt4

STGT Ada Lessons Learned

Software Metrics
STb'T
Second "[DRSS

Ground Terminal

Dec 2-3. 1992

cscl
TTC 100000, 115000, .86
DIS 76000, 79000 .96
USS 71000, 58000 1.22
EXC 26000 23000 1.13
WKS 152000 56000 2.7
COM 23000 37000 .62
MDS 100000 36000 2.77
SIM 40000 _ 1.0

Total 588000 444000 1.32

1 - Req.nmmt taaym =ha Smwm am

2 _ inelucles Co4= ol, Commma Glmun¢l _ anti Foua Detimlloa

$. tnckmm Common Ground _ aim r-maltDemotion

Chaet 5

STGT Ada Lessons Learned

Ada Project Management
Lessons Learned

Second "I'DRSS
GroundTerminal

Dec 2-3. 1992

Ada Project Management Lessons Learned

- Project Schedule/Structure

- General Issues

- Performance/Sizing

- Reusability

SEL-92-004 page 3_}u= t 6

STGT Ada Lessons Learned

Ada Project Management
Lessons Learned

Project Schedule�Structure

Second TDRSS
GroundTerminal

Dec 2-3. 1992

Allocate the Right CSCIs

Changes (Reallocation) am Difficult to Make

Avoid Early Spilt into CSCI Production Groups

Work Overall System Architecture First

Set up a Mechanism to Provide for the Overall
Good at Expense of an Individual Group

Avoid the Pressure to Accelerate Schedule

Believe the "Rule of Tens"

Misssd Goals Can Not Be Made Up

Insist on Operation's Concepts and Equipment
Designs Prior to Software Designs

View Interfaces as a "Contract" not as a Goal

Interfaces That Change Are Painful

Chart 7

STGT Ada Lessons Learned

Ada Project Management
Lessons Learned

General Issues

Second TDRSS
GroundTerminal

Dec 2-3. 1992

Understand Tools Required and Decide on their Use
Well in Advance of Needs

CM Developed DCL on-the-fly : did not under-
stand the Complexities of Ada: Shared Interface
Packages (A Good Idea) Caused Massive Recom-
piles

Understand and Plan the Role of Tools Through-
out the Whole Lifecycle

Understand and Don't Underestimate the Entire Do-
main

COTS

DEC/VMS

Prototype and Utilize Prototype Code Everywhere

Hire the Right People Then Train/Train/Train

SEL-92-004 page 384 Owt 8

STGT Ada Lessons Learned

Ada Project Management
Lessons Learned

General Issues

STGT
Second TDRSS

GroundTerminal

De," 2-3. 1992

Define and Stick to A Fixed Methodology

Define in Advance and Don't Experiment

Educate User's

Keep the SSPM Simple - Useful and Easy to Enforce

Do Code Walkthrus - Set Aside a Team to Execute

Cnalt 9

STGT Ada Lessons Learned

Ada Project Management
Lessons Learned

Performance�Sizing

STaT
Second TDRSS

Ground Terminel

Dec 2-3. 1992

More Prototyping - Estimates Based on Executed
LOCs

Complex Generics Proved to be Extremely Slow

Understand Compile and Link Process (e.g. Compiler
Eliminates Dead Code But Linker Does Not)

Use the Right Language for the Right Function

Bad Ada Is Real Baaaaad

Put Some Teeth into allocsting and enforcing Perform-
ancs Requirements

SEL-92-004 page 3_ 10

STGT Ada Lessons Learned

Ada Project Management
Lessons Learned

Reusability

Second TDRSS
GroundTerminal

Dec 2-3. 1992

Know What You are Buying and Where to Use it

Beech Components - Not Optimized for Perform-
ante

Don't Attempt High Level Generics Yet

Ground Equipment Simulation Is the Wrong
Choice

Provide for Project Wide Reuse Czar

Avoid Parochialism

Proactive Search for Opportunities

Civet 11

STGT Ada Lessons Learned

Ada Lessons Learned Second "I'DRSS
Ground Terminal

Dec 2-3. 1992

Ada Lessons Learned

m

Generics

Tasking

COTS/Platform Dependencies

Package Structuring/Record Formats

SEL-92-004 page 386 Chaa 12

STGT Ada Lessons Learned
Ada Lessons Learned

Generics

ffrGT
Second TDRSS

Ground Terminal

Dec 2-3. 1992

Can be a Performance Problem

Are to Debug with Interactive Source Level Debugger

Keep Small: Don't Attempt a Reusable Ground Station

Restrict Usage to Types as Formal Parameters

Keep Them out of the Hands of Amateurs

Limit to Your Most Experienced People

Review/Review/and Then Again - Prototype Per-
formance

CZtmt13

STGT Ada Lessons Learned

Ada Lessons Learned

Tasking

STbW
Second TORSS

Ground Terminal

Dec 2-3. 1992

Mistrusted at First - Found Many Appropriate Uses

Understand the Target Environment/Prototype

Provide for Terminate Alternstives - Make Sure a Par-
ent can Terminate Children

Exceptions Must Be Propagated Upward (Free Run-
ning Tasks Need Some Control)

Don't Substitute Tasks Where Procedures Would Suf-
rice

When Using Tasks - Centralize Control (one writer)

If You Plan on a Few Expect Many More

SEL-92-004 page 387
Omit 14

STGT Ada Lessons Learned
Ada Lessons Learned

COTS�Platform Dependencies
Second "I'DRSS

Ground Terminal

Dec 2-3, 1992

• Understand Compiler/Unker and Their Interaction

Don_ Count on Default Order of Elaboration

• Understand The Whole Domain

VMS Services Better Than Ada Features

• Pick COTS With Ada Bindings (Avoid Multiple Transla-

tions)

• SQLMODS Proved to Be Workable Interface

Imbedded SQL was impossible to Debug

Hire Experts - Utilize Vendor Consultants

Product Upgrades are Large Undertakings and Come
at the Moat Inopportune Times

Properly Plan for and Fund Product Upgrades

• Avoid the Creation of Processes Without Justification

15

STGT Ada Lessons Learned
Ada Lessons Learned

Package�Record Formats
Second "rDRSS

Ground Terminal

Dec 2-3. 1992

Umit Scope of Packages - Don=t Try to Encapsulate
and Entire Object in One Package

Use Multiple Packages - Each With a Purpose

Know the Intended Use of the Packages (e.g.
Senders vs Receivers)

Avoid Monoliths

Don't Put Database Access into Interface Packages

Don't Combine Loosely Related Types

Create Null Instances of a Type as an initial Value

Avoid String Types - Usually Masking an Enumerated
Type

Renaming - Many Differencas of Opinions:
Be Careful

SEL-92-004 page 388 ¢_art le

STGT Ada Lessons Learned
Ada Lessons Learned

Exceptions
Second "IDRSS

Ground Terminal

Dec 2-3, 1992

Use Only For Real Errors - Very Expensive for Use As
GOTOs

"When Others" obscures origin of exceptions

Understand and Plan for Unhendled Exceptions

Tracebacks and Stack Dumps are Good Debug-

ging Tools

Process/System Dumps Have Their Place

Specify and Design Expected Levels of Error Handling

Cllan 17

STGT Ada Lessons Learned

Summary
SlWr
Second TORSS

Ground Terminal

Dec 2-3. 1992 .

• Project Pressures Force Old Habits to Return

• Solidify Interfaces Under Penalty of Death

• Prototype Everything and Always

• Enforce Performance Allocations

• Focus Reuse and Dedicate Resources

• Restrict Generics

• Don't Be Afraid of Tasks

• Understand the Domain - and Hire Where Necessary

• Umit Scope of Packages

• Be Prepared to Upgrade COTS

SEL-92-004 page¢_ 18

SEL-92-O04 page 390

Panel: Is Ada Dying?

Marv Zelkowitz, University of Maryland, Facilitator

Stu Feldman, Executive Director of Computer Systems Research, Bellcore

John Foreman, Director of STARS Program, Department of Defense

Susan Murphy, AAS Software Manager, IBM

Tom Velez, President and CEO, CTA

_kr..GED_a_G PAGE BLANK NOT FILMED SEL-92-004pagc391

SEL-92-004 page 392

Panel: Is Ada Dying?

• Fadlitator:

- Marvin V. Zelkowltz, NIST/CSL and Department of Computer Science.

University of Maryland

• Panel'usts:

- Stu FeJdman, Executive Director. Computer Systems Research. BeUco_

- John Foreman. Director of STARS Program, DARI)A

- Susan Murphy. AAS Software Manager, IBM FSC

- Tom Velez, President and CEO, CTA

SEL interest in Ada

• Why SEL interest in Ada?

- SEL has loudest exper'mnce with Ada within NASA

- SEL has colJected much data on the use of Ado (as well as many other

technologies)

- SEL has analyzed Ada usage from various perspectives (e.g., see last
few Workshop proceedings)

• Results of SEL studies:

- Value of Ado not unconditionally shown

- Need to assess current status and plan future processes

PRECEDLN6 PAGE BLANK NOT FILMED

SEL-92-004 page 393

SEL Ada Projects

Ada Studies

1 parallel Study Completed
9 Ada Production Products Completed
All Projects Provide Full SEL Data
Numerous Studies Completed

TONS 38K

I EUVEDSlMlS4KJ

! EUVETIELS 67K J

FDAS 68K J

I GOESIM 92K I

Iopment - Ada and FORTRAN 1
F-

1/91 1192
1/85 1186 1187 1/88 1/89 1190

2-32

i
x

Ada (and OOD) Impacts on Cost

Cost To Develop
Effort per D_mlolxld Statement"

To Delhmr

Effort Per Delivered Stetement

1.0 1.0

*Ada : Developed Size = 100% New + 30% Old Statements
FORTRAN: Developed Size = 100°,; New ÷ 20% Old Statements

I Development cost per state.me.nt has been no cheaper for Ada Ii Resue potential of Ads is slgnmca .m. .
Reuse cost factor has cnanged in Ran systems

lUMe 2 =D

it,, S0rlWk'_ _ UIBOPAlr0RY IF.L tooo_,_osl

SEL-92-O04page394

But FORTRAN reuse is also growing

4OO

_I_ITASS

m

D

Language use in Code 500 at Goddard

62S
i0_

N_w

I=_l I
r'i _,H. [

:zl

SEL-92-004 page 395

NASA IBM mainframe Ada evaluation

• Need more development and testing wpport

- Two compilers evaluated

- Multiple source file compilation nmlted

- Ada library can be conupted

- Inflexible Ada library manager

- Need better debugger

- One compaer failed to even comlxle some modules

• Need improvement in error handling and error messages

• Need improvement in performance

• Result: Could not use IBM mainframe for larse-scele'NASA Goddard

development

Onboard embedded Ada application

• Goal: Dual 1750A processors with shared memory to handle onboard

.aviSat;en

• Environment: TI 1750A hardmre, Tartan cross compiler system on VAX

• Problems: Intermittent communication and shared memory problems.
Harcleare and softmre vendors could not solve problems.

• Resolution: Had to fly unipmcessor system with reduced functionality.

SEL-92-004 page 396

Positive attributes of Ada

• Language syntax and semantics ore in mainstream language design - an
outgrowth of FORTRAN, ALGOL and Pascal

• Language features to aid in large system de_gu, reuse and maintenance
(e.g., packages, tasking, exceptmns, generics]

• Over 250 validated compilers

• University use growing - 14 Ada textbooks and use at perhaps 10% of U.S.
universities (from: November, 1992 Comm. of the ACNI)

• Millions of lines of Ada code for commercial non-n__, my applications - .
Examples:. Shell Oil for exploration, Motorola for celluhw t e.k_..p,hones, Boemlt
for 747-400, GE for automated steel manufacturing, Iv I ! _japan) mr

comml telecommunications applications, Nokio SoltPian (Finland) for •
banking system, plus others

• Ada-gX revision to solve many of the lingering problems

Negative attributes of Ada

• Horcl to learn to use well

• Lack of production quaf_J compilers

• Performance penalty in certain critical applications

• Doexn't handle object oriented design - Impact of C:-{--i-

SEL-92-O_ page 397

Observations

After 10 years of development ...

• Growth of courses and textbooks in Ada seems very slow.

• Does not seem to be a ia_e scale movement to A da within non-DoD

segments of the industry. Most examples are nnecdot.a.I.

• Ada does not yet seem ready within the large mainframe environment at
Goddard.

• Yet, seems to be a natural attraction to C and C-J--I-. Both have attained

huge unsupported growth.

Wig there he suppmted Ada Ixoducts in 10 years?

Summary of issues

• "Many of the perceived problems with Ada were due to the immturity of
eeriy nnplementatinns, rather than flaws of the Inn[Pumice itself. Some of
these perceptions linger, even though mature Ada Implementations are
available today and most of the previously identified shortcomings hive
disappeared." - Erhard Ploedereder. Comm. of the ACM. Nov.. 1992

• Is Ada today an economkaHy viable language for building software systems?

• If so. for what dass of Ixojects is it approwlate?

• if not. what criteria are needed for determining the economic viability of
Ada (and when should they be met)

SEL-92-004 page 398

Panel organization

• Opening statements:

- What is your position and why?

- What are the objective or subjective aiteria supporting your position?

- What actions should the principles be taking (i.e.. DoD. NASA.
contractors) and what will Ada be in the next century?

• Each panelist wilJ talk for up to 10 minutes; then a 5 minute comment by
panelists on other statements; then general comments or questions from
workshop attendees

SEL-92-004 page 399

Uses and Future

qiche 1980 2000

Commercial
+ C++
Scientific/Engineering
Systems

Prototyping

Embedded/Real Time

S/W Engineering

CS Research

COBOL

FORTRAN
ASM, C

LISP,
SMALLTALK

ASM, ADA

ADA

C, LISP

+4GL

+C
C

+QUERY LANGUAGE

FORTRAN 90, C++
C++

C, PROLOG ...

C, ADA

C++,

CLOS, ML

C++, ADA

C++, ADA ?

I_1.1a 2

Sociology

Life.cycle
Born/Stillborn
Born Again?

Nurture
Phoenix/Bride of Frankenstein?

Kinship
None Allowed

Support System d"
Ada Industry *- -- Defense Budget

dtn

Ecology
Niches and Competition

SEL-92-004 page 400

I:ddnwn

Unproven Comparisons

Software Maintainability

Ada > C++ C C++

Language Complexity

Ada 9X > FORTRAN 90 > C++ >> C - FORTRAN 77

Simple - Compiler Difficulty

Ada 9X > Ada >> C++ >> C

Excellent - Compiler Difficulty

C++ > C >> Adas > FORTRAN

I_ 4

Ada Properties

+ Complete
+ Supported
+ Sponsored
+ Real-Time
+ Software-Engineering
9 Configuration Support

Syntax
Garbage Collection
Complexity
Software Support
Use in Systems ("open")
Love

SEL-92-004 page401

IS ADA DYING?

John Foreman
DARPA/SISTO
(_) 243-8655
jff@sei_nu_du

POSITION

• NOT dying, generally in good shape

- Still maturing
- Still potential for growth
- Real tech insertion and transfer takes ieng time

- Is the receptor cemmuaity mature?
- Too much 'over expectation'
- DoD still has unique requirements to satisfy

b..,lldl_"_'"-__ -_ _ _'- .

SEL-92-004 page 402

CRITERIA FOR JUDGEMENT

• Tool quality continually better

• HWbase much improved (32 bit pcocessors, etc)

• Real projects/real results

• Use of language for large projects

• Overseas use

• Stability and validation are important

GETTING TO THE YEAR 2000

• Planned 9X insertion and use (bindings)
• Cnse studies

• Do something about people: education

• Need changes to acquisition process
- life-cycle perspective
- incremental bnilds

- product evolution

• _s/product considerations

• Software product line management
- software 8rchitectures

- COTS

• Consider effects of downsizing
- niche market

- polyliagualism

&rids _/IgA.mlg2_mmJ_

SEL-92-004 page403

FAA NO OTFA01 88 C.00042

"1S ADA DYIN6"?

SUSAN MURPHY

SOFTWAREFUNCTIONAL NANAGER

DECEMBER3, 1992

FAA NO D'rFA01.88 C.0OO,42

ADA

IS

ALIVE AND NELL

ON THE

FAJs,'S ADVANCED AUTOMATION SYSTEM (AAS)

SEL-92-004 page 404

FAA I_o DTFA0t 88 C (XX)42 -- m

@S PROGRANHIGHLIGHTS

OVER 2.5 _LLION LINES OF NL_Y DEVELOPED CODE (MOSTLY ADA)

FOUR SEGMENTS KSLOCS

INITIAL SECTOR SUITE SYSTEM (ISSS) 1058

TERMINAL ADVANCEDAUTOMATION SYSTEN (TAAS) 716

TOWERCONTROLCOflPUTER COflPLEX (TCCC) 257

AREA CONTROLCORPUTERCOMPLEX (ACCC) _,8

FAA NO DTfA01 88 C 00042

AA$ PROGRANHIGHLIGHTS (COMET)

BY YEAR 2000, AAS SEGRENTS WiLL BE IN USE THROUGHOUTTHE USA

AND FOR FORESEEABLE FUTURE

-- q32 TOWERS

-- 186 TERRINALS (TRACON)

-- 23 ENROUTE CENTERS (ARTCC)

MANY HUNDREDSOF ADA PROGRAHHERSINVOLVED _ITH AAS OVER LIFE OF THE PROGRAM

AAS IS BASIS OF WORLDWIDE ATC PROGRAHS/B]])S

-- REPUBLIC OF CHINA (TA]WAN)

-- U.K.'S NEW ENROUTE CENTER (NERC)

-- GEP,HANY

-- SWEDEN

-- EUROCONTROL(ODS)

-- MEXICO

-- BELGIUf.I

SEL-92-004 page 405

FAA NO DTFA01 8B C 00042

FORADATO GROW:

ADA9X HUSTBE FULLYDOHNWARDCOHPAT1BLEWITH ADA83
(NO CODINGCHANGESREQUIRED)

ELSE

THESEPRODUCTIONSYSTEHSWILL NOTTRANSITIONTO ADA9X

HUNDREDSOF ADAPROGRAR4ERSWILL NOT EVOLVETO USEOF
ADA9X FEATURES

SEL-92-004 page406

AIR FORCE ADA PROJECTION

II_'OIU, OlULllm

MAJOR TOM CROAK, USAF

1_)91SURVEY"

COBOL

ADA

FORTRAN/
JOVIAL

C

OTHER

199S PROJECTION

40% 2O%

10% 40%

30% 25%

3% 10%

17% (450 LANG'S.) 5% (250 LANG'S.)

THERE HAVE BEEN NO ADA WAIVERS SINCE JULY 1990

*ALL OPERATIONAL SYSTEMS; ADDITIONAL 32M OF ADA CODE UNDER DEVELOPMENT

IINCOIU_O]U.TE3)

ADA INFORMATION

ADA PROJECTS

ACADEMIA 4

ARMY 62

• NAVY 220

• MARINE CORPS 41

• AIR FORCE 151

• COMMERCIAL 111

• GOV'T. (NON-DoD) 58

• INTERNATIONAL 68

OTHER DoD 7

TOTAL 722

CLEARINGHOUSE

EXAMPLES

"SUB-SIM" ATTACK SUB SIMULATOR

ADVANCE FIELD ARTILLERY TACTICAL DATA SET
(AFATDS)

ADVANCE SURVEILLANCE WORKSTATION

NAVAL FUGHT RECORD SUBSYSTEM

ADVANCED TACTICAL RGHTER (F22)

BOEING 777

ADVANCED AUTOMATION SYSTEM (AAS)

NETHERLANDS TELEPHONE CONTROL &
MONITORING SYSTEM

SINGLE CHANNEL OBJECTIVE TACTICAL
TERMINAL (SCOTT)

SEL-92-004 page 407

811TIIllq: AWlt LULLDOI, _UI_

_OI_O BJLTT_

ADA

28 COMPANIES W/VALIDATED PRODUCTS

ADA & C++ - BUSINESS CASE ANALYSIS*

GOVT. CONTROLLED/ANSI & ISO
STANDARDS

YES

22 UNIVERSrrlES & 13 DoD INSTALLATIONS

78.8

210 (SLOC/MM)
(153 DATA POINTS)

65 (_SLOC)
(153 DATA POINTS)

24 (153 DATA PTS.)

1 (163 DATA FTS)

1631
(23% HIGHER)
1738
(24% HIGHER)

• BASED ON U.S. AIR FORCE STUDY
" BY SE! FOR APPLICATIONS INFORMATION/C3 SYS1EMS

C4-÷

MARKET AVAILABILITY 18 VENDORS OFFER
C÷+

STRONG NO VALIDATION OR
STADARDIZATiON STANDARD EXIST

CROSS COMPILATION NO

EOUCATION/TRAINING 4 UNIVERSmES

FEATURE COMPARISON*" 63.9
(OUT OF 100)

pRODUCTIVITY 187 (SLOC/MM)
(NORM: 183 ALL LANG. (38 DATA PTS.)

COST SS
(NORM: 70 ALL LANGUAGES) (23 DATA PTS.)

AYQ, ERROR RATES (PER KSLOC}
INTEGRATION 31 (23 DATA iTS.)
(33: NORM ALL LANGUAGES)

FORMAL QUAL TEST
(3: NORM ALL LANGUAGES,)

ADA COCOMO COST ANALYSIS
MIS

C3 SYSTEMS

3(23DATAPTS.)

1324

1401

SEL-92-004 page 408

mlATIm

OBJECTIVE

SINGLE (DoD-1) HOL

SUPPORT MODERN
SOFTWARE ENGINEERING
TECHNIQUES

PROVIDE AN "ADA"
ORIENTED PROGRAMMING
ENVIRONMENT

INCREASE OF PRODUCTIVITY

DECREASE LC SOFTWARE
MAINTENACE (EVOLUTION) COST

STANDARDIZATION

CONTROLLED, STABLE
COMPILER IMPLEMENTATION

CLEAR "GRASS ROOTS" USAGE

(IN COMMERCE, ACADEMIA)

ADA AN EIGHTEEN YEAR SCOREBOARD

RESULT SCORE

WE (CTA) SEE ADA MANDATED IN
VIRTUALLY 100% OF DoD RFPs +

YES: THROUGH STRONG TYPING
PACKAGING, AND OTHER FEATURES +

NO: CLEARLY, THE PROMISES OF
CAIS, APSE, NOT REALIZED

NO CLEAR, CONCLUSIVE RESULTS
- APPARENT RESULT IS SAME AS
OTHER LANGUAGES

EVIDENCE IS POSITIVE - LESS
ERRORS IN O&M

YES: ANSI & ISO

YES: THROUGH GOVT. SUPPORT

NO: CERTAINLY NOT LIKE "C".

QVERALL RESULT: POSITIVE

NEUTRAL

.k

.F

SEL-92-004 page 409

SEL-92-004 page 410

Appendix A: Attendees

Abd-EI-Hafiz, Salwa K.,
University of Maryland

Addelston, Jonathan D.,
Planning Research Corp.

Agresti, Bill W., MITRE
Corp.

Aikens, Stephen D., DoD

Allen, Julia, Software
Engineering Institute

Allen, Russ, IRS

Anderman, AL Rockwell
SSD

Anderson, Barbara, Jet
Propulsion Lab

Anderson, Jim, IRS

Angler, Bruce, Institute for
Defense Analyses

Arnold, Robert S., Sevtec

Astill, Pat, Centel Federal
Services

Austin, James L., IRS

Ayers, Everett, Ayers
Associates

Bachman, Scott, DoD

Bacon, Beverly, Computer
Sciences Corp.

Bailey, Carmine M.,
McDonnell Douglas

Bailey, John, SEL

Balick, Glenn, DoD

Barbara, Edward K., U.S. Air
Force

Barbour, Ed, U.S. Air Force

Barnes, Bruce H., National
Science Foundation

Baruette, Randy, Hughes
STX

Barnhart, Don, Boeing
Aerospace Co.

Basch, Bill, Boeing
Computer Support
Services Co.

Basili, Vie, University of
Maryland

Bates, Bob G., Lockheed
Space Operations

Baumert, John H., Computer
Sciences Corp.

Bearchell, Deborah J.,
Computer Sciences
Corp.

Beatty, Kristi_ liT Research
Institute

Belle, Jeffery C., Logicon,
Inc.

Beswick, Chadie A., Jet
Propulsion Lab

Billick, Ron, Bell Atlantic

Binegar, Scott, Computer
Sciences Corp.

Biondi, Marisa, IRS

Bishop, Steven, Naval Air
Warfare Center

Bisignani, Margaret, MITRE
Corp.

Bissonette, Michele,
Computer Sciences
Corp.

Blaekwelder, Jim, Naval
Surface Warfare Center

Blagmon, Lowell E., Naval
Center for Cost Analysis

Biankenship, Donald D., U.S.
Air Force

Blankenship, Gordon, U.S.
Air Force

Bloodgood, Pete, W,S

Blough, Lyn, Computer
Sciences Corp.

Blum, Bruce I., Applied
Physics Lab

Bogdan, Robert J., Computer
Sciences Corp.

Boger, Jacqueline, Computer
Sciences Corp.

Boland, Dillard, Computer
Sciences Corp.

Bond, Jack, DoD

Boon, Dave, Computer
Sciences Corp.

Booth, Eric, Computer
Sciences Corp.

Borger, Mark W., Software
Engineering Institute

Boyce, Glenn W., MITRE
Corp.

Bozenski, Richard, DOD

Bozoki, George J., Lockheed

Bradley, Stephen, MMS
Systems

Bradshaw, Royce, NATO

Brandt, Thomas C., Software
Engineering Institute

Bredeson, Mimi, Space
Telescope Science
Institute

Briand, Lionel, University of
Maryland

Brm, Gary, IRS
Brisco, Phil C., Hughes STX

Brown, Robert E., Hughes
Aircraft Co.

Brownsword, Lisa L.,
Computer Sciences
Corp.

Brownsword, Robert J.,
Rational

Brulm, Anna, Jet Propulsion
Lab

Bullock, Steve, IBM

Bunch, Aleda, Social
Security Administration

Burelh Billie, IBM

Bums, Patricia, Computer
Sciences Corp.

Buffer, Sheldon, Computer
Sciences Corp.

Butterworth, Paul, Hughes
STX

Button, Janice, DoD

Button, Judee, IRS

Caldiera, Gianluigi,
University of Maryland

Calvo, Robert, Paramax
Aerospace Systems

Cantalupo, Joy, IIT Research
Institute

Capraro, Gerald T., Karman
Sciences

Card, Dave, Computer
Sciences Corp.

Carlin, Catherine M., Dept.
of Veterans Affairs

Carlisle, Candace,
NASA/GSFC

PRECEDING PAGE BLANK NOT FILMED SEL-92-004page411

Carlson, J., Computer
Sciences Corp.

Carpenter, Maribeth B.,
Software Engineering
Institute

Carmthers, Mary W., I1T
Research Institute

Carter, Mike, U.S. Air Force

Cecil, Robert W., Computer
Sciences Corp.

Cheramie, Randy, Loral
Space Information
Systems

Cheung, Helen, Tandem
Computers, Inc.

Chiem, I-Ming Annie,
Computer Sciences
Corp.

Chimiak, Reine A.,
NASA/GSFC

Chittister, Clyde, Software
Engineering Institute

Chiverella, Ron, PA Blue
Shield

Cho, Kenneth, U.S. Air Force

Choquettc,Carl, HT
Research Institute

Choudhary, Rahim, Hughes
STX

Chrlstophe, Debou, Alcatel-
Elin Research Centre

Chu, Martha, Computer
Sciences Corp.

Chu, Richard, Loral AeroSys

Church, Vic, Computer
Sciences Corp.

Clapp, Judith A., MITRE
Corp.

Clark,CaroleA.,Dept. of
Veterans Affairs

Clark, Peter G., TASC

Clarke, Margaret J., IBM

Coleman, Carolyn, IIT
Research Institute

Coudon, Steven E.,
Computer Sciences
Corp.

Connor, David, Computer
Sciences Corp.

Cook, John F., NASA/GSFC

Coon, Richard, Computer
Sciences Corp.

Comett,LisaK.,U.S.Air
Force

Couchoud, Carlton B., Social
Security Administration

Cover, Donna, Computer
Sciences Corp.

Crafts, Ralph E., Ada
Software Alliance

Creecy, Rodney, Hughes
Au'craft Co.

Crehan, Dennis J., Loral
AeroSys

Creps, Dick, Paramax
Aerospace Systems

Cuesta, Emesto, Computer
Sciences Corp.

D'Agostino, Jeff, The
Hammers Co.

Dabrowski, Christopher,
NIST

Daku, Walter, Pammax
Aerospace Systems

Daney, William E.,
NASAJGSFC

Dangerfield, Olie B.,
Computer Sciences
Corp.

Daniels, Charles B., Paramax
Aerospace Systems

Daniels, Helen, IRS

Davis, Ann, Computer
Sciences Corp.

Davis, C., Computer
Sciences Corp.

Day, Nancy A., Naval
Surface Warfare Center

Day, Orin, Hughes STX

Decker, William, Computer
Sciences Corp.

Denney, Valerie P., Martin
Marietta

Dhaliwal, Avtar, SEER
Systems Corp.

DiNunno, Donn, Computer
Sciences Corp.

Dikei, David, Applied
Expertise, Inc.

Diskin, Barbara N., Census
Bureau

Diskin, David H., Defense
Information Systems
Agency

Diven, Jeff, I_

Doland, JerryT., Computer
Sciences Corp.

Dolgaard, Jon, Sunquest
Information Systems

Donnelly, Richard E., DoD

Dortenzo, Don, Fairchild
Space Co.

Dowen, Andrew, Jet
Propulsion Lab

Drake, Anthony M.,
Computer Sciences
Corp.

Driesman, Debbie, Computer
Sciences Corp.

Duncan, Scott P.,
BELLCORE

Duniho, Mickey, DoD

Dunn, Joseph, Computer
Sciences Corp.

Durek, Tom, TAD
Consulting

DuvalL Lorraine, Syracuse
University

Dyer, Michael, IBM

Edelson, Robert, Jet
Propulsion Lab

Edluud-O'Mahony, Sheryl J.,
USA, ISSOCW

Eichmann, David, University
of Houston-Clear Lake

Ellis, Walter, IBM

Elovitz, Honey, MITRE
Corp.

Elston, Judson R., Boeing
Aerospace Co.

Elwood, Todd W., Computer
Sciences Corp.

Emerson,Curtis,
NASA/GSFC

Emery, RichardD., Vitro
Corp.

Engelmeyer, William J.,
Computer Sciences
Corp.

Evanco, William, MITRE
Corp.

Evers, J. W., Paramax
Aerospace Systems

Fagan, Michael Michael
Fagan Associates

Failer, Ken, HTASC

Farah, Jocelyne, U.S. Air
Force

SEL-92-004 page 412

FarrelL Mary Ann, Logicon,
Inc.

FarreU, William T., DSD
Laboratories, Inc.

Fauerby, John, Computer
Sciences Corp.

Feldman, Stuart,
BELLCORE

Ferguson, Frances, Stanford
Telecommunications,
Inc.

Ferrigno, Peter M., RJO-
Enterprises, Inc.

Fink, Mary Louise A.,
Treasury Department

Finley, Doug, Paramax
Aerospace Systems

Fleming, Barbara

Fleming, Judy K., IBM

Foreman, John, Software
Engineering Institute

Forsythe, Ron,
NASA/Wallops Flight
Facility

Fouser, Thomas J., Jet
Propulsion Lab

Fox, Raymond, DoD

Franklin, Jude E., Planning
Research Corp.

Friedman, Seymour R.,
MITRE Corp.

Fuentes, Wilfredo, Logicon,
Inc.

Gallagh_, Barbara, DoD

Gaylord, Jerry, IFl"Research
Institute

Gehrmann, Paul, IBM

Ceil, Ester, Westinghouse

Geil, Leana M., OepL Of
Veterans Affairs

Gieser, Jim, Paramax
Aerospace Systems

Gillam, Michael OAO Corp.

Gire, Carey, Loral AeroSys

Giusti, Ronald V., MITRE
Corp.

Glascock, Robin, Tandem
Computers, Inc.

Glass, Robert L., Computing
Trends

Godfrey, Sally, NASA/GSFC

Gogia, B. K., Datamat
Systems Research, Inc.

Golden, John R., Rochester
Institute of Technology

Golding, Annetta, Census
Bureau

Gordon, DeL Paramax
Aerospace Systems

Gormally, John M., TRW

Gosnell, Arthur B., U.S.
Army Missile Command

Gotterbam, Donald" East
Tennessee State
University

Graham, Robert P., U.S. Air
Force

Gray, CarmeUa, CRM

Gray, James H., Computer
Sciences Corp.

Green, David, Computer
Sciences Corp.

Green, Scott, NASA/GSFC

Greene, Joseph B., Booz,
Allen & Hamilton, Inc.

Gregory, John G.,
Westinghouse

Grondalski, Jean F.,
Computer Sciences
Corp.

Groveman, Brian S.,
Computer Sciences
Corp.

Gu, Dechaug, North Carolina
A&T State University

Guillebeau, Pat, New
Technology, Inc.

Gupta, Lakshmi, Loral
AeroSys

Hall, Dana L., SAIC

Hall, John E., DoD

Hall, Ken, Computer
Sciences Corp.

Hall, Susan M., SotTech, Inc.

Halpine, Scott, Loral
AeroSys

Halterman, Karen,
NASA/GSFC

Hankins, Dick, General
Dynamics

Hanna, Susan, Beckman
Instruments, Inc.

Harrington, Keith, U.S. Air
Force

Hams, Barbara, IRS

Hams, Bernard"
NASA/GSFC

Harris, Mary, Hughes
Aircraft Co.

Hashmi, Awais A., Digital
Systems

Hatch, Ada, IRS

Haasler, Philip A., IBM

Hazle, Marlene, MITRE
Corp.

Heam, Rick, Ollila Industries

Heller, Gerard H., Computer
Sciences Corp.

Hendriek, Christine,
Computer Sciences
Corp.

Hendrick, Robert B.,
Computer Sciences
Corp.

Hendrzak, Gary, Booz, Allen
& Hamilton, Inc.

Hetmanski, Christopher,
University of Maryland

Hill, Ken, Paramax
Aerospace Systems

I-lilldrup, Kerry C., Hughes
STX

Hills, Frederick, Software
Productivity Consortium

Hladry, John, Boeing
Computer Support
Services Co.

14o, N., Computer Sciences
Corp.

Hoffman, Dan, University of
Victoria

Hoffman, John C., Stmquest
Information Systems

Hoffmann, Kenneth, Ryan
Computer Systems

Holmes, Barbara, CRM

Holmes, Joseph A., IRS

Hover, Karen E., Martin
Marietta

Hsiah, K., Computer
Sciences Corp.

Huang, Bing, FAA

Hull Larry, NASAJGSFC

Hung, Joshua C., FAA

Huza, Marilyn, IRS

Hynes, Lois, IRS

Ilgenhitz, Charles, IRS

SEL-92-004 page 413

Ippolito, Laura, NIST

Iscoe, Neil, EDS Research,
Inc.

Iskow, Larry, U.S. Census
Bureau

Jackson, Ann, University of
Victoria

Jackson, Lyn, Logicon, Inc.

Jackson, Steve, U.S. Air
Force

James, Chris, Computer
Sciences Corp.

James, Jason S., DoD

Jay, Elizabeth M.,
NASA/GSFC

Jeletic, Jim, NASA/GSFC

Jeletic, Kelly A.,
NASAJGSFC

Jenkins, John O., City
University

Jenkins, Jr, Robert, Computer
Sciences Corp.

Jepsen, Paul L., Jet
Propulsion Lab

Jessen, William J., General
Electric

Jilek, Sinai S., U.S. Dept, of
Energy

Johnson, Kent A., Software
Productivity Consortium

Jones, Christopher C., liT
Research Institute

Jones, Deborah M., FAA

Jones, Mel, Applied
Expertise, Inc.

Jones, Nancy A., MITRE
Corp.

Jordano, Tony J., SAIC

Kavanagh, Dennis M.,
Computer Sciences
Corp.

Kelly, John C., Jet Propulsion
Lab

Kelly, Sharon C., Harris
Corp.

Kemp, Dennis, Hughes STX

Kathryn M.,Ke ; SAmQ
Kester, Rush, Computer

Sciences Corp.

Kieckhefer, Ron, Computer
Sciences Corp.

Kim, Senng, Computer
Sciences Corp.

Kirkendall, Thomasin, NIST

Kirkpatriek, Diane, Ball
Aerospace

Kistler, David M., Computer
Sciences Corp.

Klitsch, Gerald, Computer
Sciences Corp.

Knapp, Andy, Bell Atlantic

Knoell, Roger, U.S. Air
Force

Koeser, Ken, Vitro Corp.

Konopka, Joseph J.,
Computer Sciences
Corp.

Kontson, Kalle R., lit
Research Institute

Ko_, Smart, Systems
earch& Applications

Corp.
Kosloskl, Joe,IRS
Kovin, Steven E., Computer

Sciences Corp.

Kramer, Nancy, Viar & Co.
/Dyncorp

Kramer, Teresa L., DoD

Kristof, Dave, U.S. Air Force

Kudlinski, Robert A.,
NAS_C

Kurihara, Tom, Logicon, Inc.

Lai, R., Chi Tan,
International S/W
Process Constellation

Lal, Nand, NASA/GSFC

Lain, Vincent, IMS

Lane, Sherry, CRM

Lang, John, Computer
Sciences Corp.

Langston, James H.,
Computer Sciences
Corp.

Lauhenthal,Nancy,
NASA/GSFC

Lawlor, Tom, Bell Atlantic

Lawrence, Raymond,
LMcDonnell Douglas

Lawrence-Pfleeger, Shaft,
MITRE Corp.

Ledford, Rick, McDonnell
Douglas

Lee, Raymond H., Computer
Sciences Corp.

Lee, Thomas S., Paramax
Aerospace Systems

Lehman, Meir, Imperial
College of Science

Lemmon, Doug, University
of Maryland

Leone, Rick, Hughes STX

Levitt, David S., Computer
Sciences Corp.

Lewicki, Scott A., Jet
Propulsion Lab

Li, N'mgda Rorry, University
of Maryland

Liebrecht, Paula, Computer
Sciences Corp.

Lijewski, Mike, Hughes STX

Likness, IVl_k, Martin
Marietta

Lindsay, Orhmdo, Computer
Sciences Corp.

Lindvall, Mikael, Linkoping
University

Lippens, Gary A., U.S. Air
Force

Litz, Deborah, DoD

Liu, Jean C., Computer
Sciences Corp.

Liu, Kuen-san, Computer
Sciences Corp.

Loesh, Bob E., Software
Engineering Sciences,
Inc.

Loftin, Donald R., GE
Aerospace

Long, Roger, LTASC

Loomis, Todd, Booz, Allen
& Hamilton, Inc.

Loy, Patrick H., Loy
Consulting, Inc.

Lueas, Janice P., Dept. of
Treasury

Luezak, Ray, Computer
Sciences Corp.

Lupinetti, Martin, Computer
Sciences Corp.

Luppino, Fred, IBM

Lyle, William, TASC

Maeeannon, Cecil, FAA

Madden, Joseph A., U.S. Air
Force

Majane, John A., EG & G
WASC, Inc.

Manicka, Gary, Hughes STX

SEL-92-004 page 414

Manter, Keith, Computer
Sciences Corp.

Marciniak, John, Computer
Technology Assoeiates_
/ale.

Mareoux, Darwin, DoD

Ma_niss, Terrk Computer
ciences Corp.

Martin, Carol, TRW

Mashiko, Yasuhiro,
University of Maryland

Mauney, Mike, Census
Bureau

Maury, Jesse, Omitron, Inc.

McConnel, Pat, IRS

McCreary, Julia M., IRS

McGarry,FrankE.,
NASA/GSFC

McGarry,Maryham,In"
Research Institute

McGarry, Peter, General
Electric

McGovem, Dan, FAA

McKay, Judith A., Census
Bureau

McKinney, Cathy, IRS

McKinney, Jimmie,
USAFISA

McNeill, Justin F., Jet
Propulsion Lab

McSharry, Maureen,
Computer Sciences
Corp.

Mehta, Shilpa, American
Systems Corp.

Meick, Douglas, Library of
Congress

Mendonca, Manoel G.,
University of Maryland

Merry, Paul, Harris Space
Systems Corp.

Miller, Ronald W.,
NASAJGSFC

Miller, Sharon E., AT&T
Bell Lab

Miller, Terrence, Project
Engineering, Inc.

Mills, John P., Booz, Allen &
Hamilton, Inc.

Mohallatee, Michael,
Computer Sciences
Corp.

Moleski, Laura, CRM

Moleski, Walt, NASA/GSFC

Moniuszko, Charles, DoD

Moore, Betty, IRS

Moore, Kathryn J.,
USAISSDC-A

Moore, Panla, NOAA/SPOx3

Moortgat, Jean-Jacques,
Booz, Allen & Hamilton,
InC.

Morasea, Sandro, University
of Maryland

Morgan, Elizabeth, Bendix
Fmld Engineering Corp.

Momsiewicz, Linda M.,
Computer Sciences
Corp.

Mostoller, Brad, Sunqnest
Infommtion Systems

Moxley, Fred I., DISA/CFS

Mucha, John F., IRS

Muckel, Jerry, Computer
Sciences Corp.

Mulville, Daniel, NASA/HQ

Munkeby, Steve, Martin
Marietta

Murphy, Susan, IBM

Murtha, Kimberly N.,
Sunquest Information
Systems

Myers, Philip I., Computer
Sciences Corp.

Myers, Robert M., MITRE
Corp.

Narrow, Bernie, Bendix Field
Engineering Corp.

Nassau, Dave, Applied
Expertise, Inc.

Newman, Phillip A.,
NASA/GSFC

Nishimoto, Theresa, Coopers
& Lybrand

Nola, Charles L.,
NASA/MSFC

Noonan, Carolina, Computer
Sciences Corp.

Noone, Estelle, Computer
Sciences Corp.

Norcio, Tony F., University
of Maryland Baltimore
County

O'Brien, Robert L., Paramax
Aerospace Systems

O'Connor, Sean, Martin
Marietta

O'Neill, DOn

O'Neill, Patrick. U.S. Army
AMSAA

O'Neill, Peter, PA Blue
Shield

Ohimaeher, Jane A., Social
Security Administration

Okupski, Scott, U.S. Air
Force

Olson, Lenoard, Hughes STX

Osifchin, Tammy, Hughes
Aircraft Co.

Padgett,Kathy,Census
Bureau

Page,Gerald,Computer
Sciences Corp.

Pajerski, Rose, NASA/GSFC

Palmer, Regina, Martin
Marietta

Paluzzi, Paul, Computer
Sciences Corp.

Pang, Les, FAA

Panlilio-Yap, Nikki M., IBM
Canada Ltd.

Park, Robert, Computer
Sciences Corp.

Patrick. Dchora, IIT Research
Institute

Patterson, F., G., NASA
SSFPO

Patton, Kay, Computer
Sciences Corp.

Pavnica, Paul,
Treasury/Fmcen

Pecore, Joseph N., Vitro
Corp.

Peeples, Ron L., IBM

Pendergrass, Vicki,
NASA/GSFC

Pendley, Rex, Computer
Sciences Corp.

Peng, Wendy, NIST

Peng, Yuh-Fen, Computer
Sciences Corp.

Perry, Brendun, Hughes STX

Peters, Jeffrey, U.S. Air
Force

Pettijohn, Margot, IRS

Philpot, Donn E.,
Technology
Applications, Inc.

SEL-92-004 page 415

Philpot, Fred, Dept. of the
Air Force

Plett, Michael E., Computer
Sciences Corp.

Plonk, Glenn, DoD

Polly, Mike, Raytheon

Pores, B., Computer Sciences
Corp.

Porter, Adam A., University
of Maryland

Potter, Marshall R., Dept, of
the Navy

Porringer, David L., SAIC

Powers, Larry, Unisys Corp.

Presbury-Bush, Anna, DoD

Preston, Dick

provenz_ Clint, Booz, Allen
& Hamilton,Inc.

Quann, Eileen S., Fastrak
Training, Inc.

Quindlen, Brian, Computer
Sciences Corp.

Quinn, Harold, Computer
Sciences Corp.

Rager, William J., Computer
Sciences Corp.

RahmanL Donna, Computer
Sciences Corp.

Rajfich, Vaclav, Wayne State
University

Raney, Dale, LTRW

Ransdell, William G.,
Research Triangle
Institute

Ray, Julie, New Technology,
Inc.

Raymond, Jack, Computer
Sciences Corp.

Reddy, SwamL Hughes STX

Reed, Lee Scott, Software
Engineering Institute

Regardie, Myrna L.,
Computer Sciences
Corp.

Reifer, Don J., Reifer
Consultants, Inc.

Repsher, Marie, IRS
Rhoads, Thomas E.,

Computer Sciences
Corp.

Rhodes,Tom, NIST

Rice, Mary K., USAF

Ridgeway, Roland M.,
NASAMQ

Pisser, Gary E., Dept. of
Veterans Affairs

Rizer, Stepham, NAWC-AD

Rizz_llo,John, Loral
AeroSys

Roberts,Becky L.,CBIS
FederalInc.

Roberts, Geraldine,
Computer Sciences
Corp.

Robertson, Laurie, Computer
Sciences Corp.

Robinett, Susan, Systems
Research & Appfications
Corp.

Robinson, Alice B.,
NASA/HQ

Rohr, John A., Jet Propulsion
Lab

Rombach, H. Dieter,
University of
Kaiserslautem

Rose, Lois A., Bell Atlantic

Rosenberg, Linda H.,
NASA/GSFC

Roth, Karen, Paramax
Aerospace Systems

Rouff, Chris, NASA/GSFC

Roy, Dan M., Software
Engineering Institute

Rudiger, Karen S., Boeing
Computer Support
Services Co.

Russell, Wayne M., GTE

Russo Waters, Olga,
Logicon, Inc.

Rymer, John, IBM

Sabarre, Nick, IRS

Sahady, Phil, Booz, Allen &
Hamilton, Inc.

Saisi, Robert, ODSD
Laboratories, Inc.

Salwin, Arthur, MITRE
Corp.

Sanden, Bo I., George Mason
University

Santiago, Richard,Jet
Propulsion Lab

Schappelle, Sam, IBM

Schilling, Mark, Project
Engineering, Inc.

Schneidewind, Norman F.,
Naval Postgraduate
School

Schcen, Bill, HT Research
Institute

Schuler,PatM.,.
NASA/LaRC

Schwartz, Karen D.,
Govermnont Computer
News

Schwarz, Henry, NASA/KSC

Scott, Rhonda M., IBM

Seaman, Carolyn B.,
University of Maryland

Seaver, David P., Project
Engineering,Inc.

Seidowitz,Ed,NASAJGSFC

Shammas, Barbara A., IRS

Sheets, Teresa B.,
NASA/GSFC

Sheppard, Sylvia B.,
NASA/GSFC

Shirey, Carl L., ITT

Shockey, Donna, IRS

Short, Cathy, IRS

Siddalingaiah, Vimala,
Computer Sciences
Corp.

Siegel Karla, MITRE Corp.

Simenson, Norman, FAA

Singer, Carl A., BELLCORE

Singh, prakash, EER Systems
Corp.

Singleton, Frank L., Jet
Propulsion Lab

Skrivan, James A., Boeing
Computer Support
Services Co.

Sledge, Carol, Software
Engineering Institute

Smith, David, Computer
Sciences Corp.

Smith, Diana, I1TResearch
Institute

Smith, Donald, NASA/GSFC

Smith, Shawn D., American
Systems Corp.

Smith, Vivian, AFAA

Snook, Judy, Computer
Sciences Corp.

Song, Fu-Fu, Computer
Sciences Corp.

SEL-92-004 page 416

Sorensen, Steven, Martin
Marietta

Sova, Don, NASA/HQ

Spangler, Alan R., IBM

Spence, Bailey, Computer
Sciences Corp.

Spencer, Mike, Naval Air
Warfare Center

Spool, Peter R., Siemens
Corporate Research, Inc.

Spore, Patricia A.,
NASA/HQ

Squires, Burton E.,
Mnemonic Systems Inc.

Srivastava, Alok, Computer
Sciences Corp.

Stanton, Faye, IRS

Stark, Michael NASA/GSFC

Stauffer, Mike P., General
Electric

Stevens, Jan, Systems
Research & Applications
Corp.

Stewart, Barbara C., U.S. Air
Force

Strano, Caroline, FAA

Sugumaran, Vijayan, George
Mason University

Svara, Allan C., USAF/Tth,
Comm, Group

Swain, Barbara, University of
Maryland

Szulewski, Paul S., Draper
Labs, Inc.

Tasaki, Keiji, NASA/GSFC

Tausworthe, Robert C.,
NASA/JPL

Tavakoli-ShirajL Iraj, George
Mason University

Tervo, Betsy, Computer
Sciences. Corp.

Thackrey,Kent, Planning
Analysis Corp.

Theeke, Patrick, Electronic
Warfare Associates, Inc.

Theofanos, Mary, Martin
Marietta

Thomas, Donna C.,
Computer Sciences
Corp.

Thomas, Isac, Computer
Sciences Corp.

Thomas, William, MITRE
Corp.

Thomen, Mark, IBM

Thrasybule, Wesner,
Computer Sciences
Corp.

Tippamju, SurL Hughes STX
T_snado, Gilbeno M.

Tran, Dennis A., MITRE
Corp.

Tran, Tuyet-Lan, Jet
Propulsion Lab

Trujillo,NelsonW.,
NDU/IRMC

Tmong, Son,NASA/GSFC

Tsagos,Dinos

Tupman,JackR.,Jet
PropulsionLab

Ulhnan, Richnrd, Hughes ST
Systems Corp.

Usavage, Paul General
Electric

Valett, Jon, NASA/GSFC

Valleni, Bob R., TRW

Van Meter, David, Logicon,
Inc.

Van Verth,PatriciaB.,
Canisius College

VanHorn, Wendy J., IRS

Varidett, Vanessa, liT
ResearchInstitute

Vaughan, Joe, Social
Security Administration

Vanse, David G., IBM

Vazqnez, Federico,
Computer Sciences
Corp.

Velez, Tom E., Computer
Technology Associates,
Inc.

Verducci, Anthony J., AT&T
Bell Lab

Viola, Ken W., IRS

Voit, Eric. Bell Atlantic

VoUa, Lawrence G., AT&T
Bell Lab

Wagoner, Raelene, Systems
Research & Applications
Corp.

Wali_ora, Sharon R.,
omputer Sciences

Corp.

Wallace, Charles J.,
Integrated Systems
Analysts, Inc.

Wallace, Dolores, NIST

Walsh, Bob, IRS

Walsh, Chuck, NASA Center
for Aerospace
Information

Waszkiewicz, Mary Lily,
Computer Sciences
Corp.

Weber, Paul A., Technology
Planning, Inc.

Weiss, Peter, Arthur D.,
Little, Inc.

Weiss, Sandy L., GTE

Wells, Robert, Computer
Sciences Corp.

Werling, Richard, Software
Productivity Consortium

Wessale, William, CAE-Link
Corp.

Weston, William,
• NASAJGSFC

Weszka, Joan, IBM

Wheeler, J. L., Computer
Sciences Corp.

White, Cora P., New
Technology, Inc.

Whitehead, John W.,
NAVSEA 06D3

Whitfield, Josette, IIT
Research Institute

WhiUnan, Cynthia B.,
USAISSDC-A

Willdns, Elsie C., USAFISA

Williamson, Jim, Sunquest
Information Systems

Wilson,Jim,Applied
Expertise,Inc.

Wilson,Randy D.,Naval
CenterForCostAnalysis

Wingfield, Lawrence D.,
Computer Sciences
Corp.

Wisdom, Rex, U.S. Air Force

Wise, Charles F., Technology
Applications, Inc.

Wong, Sha, IMS

Wong, Yee, Computer
SciencesCorp.

SEL-92-004 page 417

Wood, Richard, Computer
Sciences Corp.

Wood, Ten-i, NASAJGSFC

Woodward, Herbert P., TRW

Worley, Patricia W., Boeing
Computer Support
Services Co.

Worunan, Kristin, Hughes
STX

Yin, Sandra, IRS

Youman, Charles, SETA
Corp.

Young, Andy, Bendix Held
Engineering Corp.

Yu, Anna, NC A&T State
University

Zavaleta, Henry M.,
Computer Sciences
Corp.

Zaveler, Saul U.S. Air Force

Zelkowitz, Mary, University
of Maryland

Zimet, Beth, Computer
Sciences Corp.

Zucconi, Lin, Lawrence
Livermore National
Laboratory

Zvegintzov, Nicholas,
Software Maintenance
News Inc.

SEL-92-004 page 418

Appendix B: Standard Bibliography of SEL Literature

SEL-92-004 page 419

SEL-92-004page 420

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-

ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL.ORIGINATED DOCUMENTS

SEL-76-(D1, Proceedings From the First Summer Software Engineering Workshop,

August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-78-005, Proceedings From the Third Summer Software En_ng Workshop,

September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T E. Mapp,

December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide

(Revision 3), W. J. Decker, W. A. "lhylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory." Relationship Equations,

IC Freburger and V. R. Basili, May 1979

SEL-794304, Evaluation of the Caine, Farbe_, and Gordon Program Design Language

(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software En "gmeeringWorkshop,

November 1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)

System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005,A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,

November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software

Systems, J. E Cook and E E. McGarry, December 1980

BI-1

SEL-92-004 page 421

PNECEDIN6 PAGE BLANK NOT FILMED

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,

V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data,

D. M. Weiss, November 1981

SEL-81-012, The Rayleig h Curve as a Model for Effort Distribution Over the Life of

Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013,Proceedings of the Sixth Annual Software Engineering Workshop, December

1981

SEL-81-014,Automated Collection of Software Engineering Data in the Software Engi-

neering Laboratory (SEL), A. L. Green, W. J. Decker, and E E. McGarry, September

1981

SEL-81-101, Guide toData Collection, V. E. Church, D. N. Card, F. E. McGarry, et al.,

August 1982

SEL-81-104, The Software Engineering Laboratory, D.N. Card, E E. McGarry,

G. Page, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&IO Methodol-

ogy for Flight Dynam/cs, G. Page, E E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora,

E E. McGarry, et al., June 1992

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,

D. N. Card, and E E. McGarry, September 1982, vols. I and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,

December 1982

SEI_82-008, Evaluating Software Development by Analysis of Changes: The Data From

the Software En'gmeering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description

(Revision 1), W. A. "lhylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,

M. G. Rohleder, and 1:.E. McGarry, October 1983

SEL-82-1106, Annotated Bibliography of Software Engineering Laboratory Literature,

L. Morusiewicz and J. Valett, November 1992

SEL-83-001, An Approach to Software Cost Estimation, F.E. McGarry, G. Page,

D. N. Card, et al., February 1984

BI-2

SEL-92-004 page 422

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,

E E. MeGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,

November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-

sion 1), C. W. Doerflinger, November 1989

SEL- 84-003, Investigation of Specification Measures for the Software Engineering Labora-

tory (SEL), W. W. Agresti, V. E. Church, and E E. MeGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis,

E E. MeGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,

R. W. Selby, Jr., E E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray

ObservatoryAda Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testin_ CLEANROOM, and

Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Sol, ware Verification and Testing, D. N. Card, E. Edwards, E McGarry,

and C. Antic, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and

M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)

Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume 1_, November 1986

BI-3

SEL-92-004 page 423

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-_6, Proceedings of the Eleventh Annual Software Engineering Workshop,

December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software

Development, S. Perry et al., March 1987

SEL-87-002,Ada ® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),

W. W. Agresti, June 1987

SEL-87-004, Assess/ng the Ada ® Design Process and Its Implications." A Case Study,

S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,

December 1987

SEL-88-001, System Testing of a Production Ada Project" The GRODY Study, J. Seigle,

L. Faker, and Y. Shi, November 1988

SEL-88-002, Collected Software En "gmeeringPapers: Volume 111,November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase

Ana/ysis, IC Quimby and L. Faker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,

November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,

S. Godfrey and C. Brophy, September 1989

SEL-89_, Evolution of Ada Technology in the Flight DynamicsArea: Implementation/

Testing Phase Analysis, IC Quimby, L. Faker, L. Smith, M. Stark, and E MeGarry,

November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/

Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software En "gmeeringPapers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,

November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

BI-4

SEL-92-004 page 424

SEI_,-89-103, Software Management Environment (SME) Concepts and Architecture

(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-201, Software Engineering Laboratory (SEL) Database Organization and User's

Guide (Revision 2), L. Morusiewicz, J. Bristow, et al., October 1992

SEL-90-001, Database Access Manager for the Software Engineering Laboratory

(DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software En_ng Laboratory." Project

Description and EartyAnatysis, S. Green et al., March 1990

SEL-90-003,A Study of the Portability of anAda System in the Software Engineering Labo-

ratory (SEL), L. O. Jan and S. R. Valeth Jane 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-

ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software En "gmeeringPapers: Volume VIII, November 1990

SEL-90-006, Proceedings of the F_eenth Annual Software Engineering Workshop,

November 1990

SEI.r91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-

agement Ru/es, W. Decker, R. Hendriek, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,

E. W. Booth and M, E. Stark, July 1991

SEI_91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,

S. Green, November 1991

SEI_,-91-005, Collected Software Engineering Papers: Volume 1X, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,

December 1991

SEI_,-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-

sion 1), E McGarry, August 1991

SEL,92-001, Software Management Environment (SME) Installation Guide, D. Kistler

and K. Jeletic, January 1992

SEI.,-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)

Database, G. Heller, J. Valett, and M. W'fld, March 1992

SErfJ92-003, Collected Software Engineering Papers: Volume X, November 1992

SEI_92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop,

December 1992

BI-5

SEL-92-004 page 425

SEL-RELATED LITERATURE

10Abd-EI-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for

Extraction of Reusable Components," Proceedings of the IEEE Conference on Software

Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Aria for Sat,
ellite Simulation: A Case Study," Proceedings of the First International Symposium on

Ada for the NASA Space Station, June 1986

2Agresti, W. W., E E. McGarry, D. N. Card, et al., "Measuring Software Technology,"
Program Transformation and Programming Environments. New York: Springer-Verlag,

1984

1Bailey, J. W., and V. R. Basili, '_ Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software Engineer-

/ng. New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development
Reusability," Proceedings of the Eighth Annual National Conference onAda Technology,

March 1990

10Bailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and
Reuse," Proceedings of the ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., "Models and Metrics for Software Management and Engineering,"
ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. 1L, Tutorial on Models and Metrics for Software Management and Engineen'ng.
New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the

First Pan-Pacific Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of

Maryland, Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,

Technical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"

1EEE Software, January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distn%ution
and Resource Estimation Problems?," Journal of Systems and Software, February 1981,

vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, '_ Reference Architecture for the Compo-

nent Factory,"ACM Transactions on Software Engineering and Methodology, January

1992

BI-6

SEL-92-004 page 426

l°Basili, V., G. Caldiera, E McGarry, et al., "The Software Engineering Laboratorym

An Operational Software Experience Factory," Proceedings of the Fourteenth Interna-
tional Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. 17,., and K. Freburger, "Programming Measurement and Estimation in the

Software Engineering Laboratory," Journal of Systems and Software, February 1981,

vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and
Other Variables in the SEL," Proceedings of the International Computer Software and

Applications Conference, October 1985

4Basili, V. 1L, and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in

the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perrieone, "Software Errors and Complexit3r.. An Empirical

Investigation," Communications oftheACM, January 1984, vol. 27, no. 1

1Basili, V. 1L, and T. Phillips, "Evaluating and Comparing Software Metrics in the Soft-

ware Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, '_d_ROWSMITH-PJA Prototype Expert System for

Software Engineering Management," Proceedings of the IEEE/MIIRE Expert Systems

in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of

Maryland, Teelmical Report TR-1442, September 1984

Basili, V. 1L, and R. Reiter, "Evaluating Automatable Measures for Software Develop-

ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,

Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals

and Environments," Proceedings of the 9th International Conference on Software Engi-

neer/ng, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Envi-
ronment'" Proceedings of the Joint Ada Conference, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Integrating Measurement Into Software
Environments," University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments," IEEE Transactions on Software Engineering, June

1988

7Basili, V. R., and H. D. Rombach, TowardsA Comprehensive Framework for Reuse: A

Reuse-Enabling Sof'tware Evolution Environment, University of Maryland, Technical

Report TR-2158, December 1988

BI-7

SEL-92-004 page 427

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical

Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombaeh, "Support for Comprehensive Reuse," Software En-

gineering Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-
teristic Software Metric Set," Proceedings of the Eighth International Conference on Soft-

ware Engineering. New York: IF_, Computer Society Press, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strat-

egies," IEEE Transactions on Software Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection

and Analysis Methodology," Proceedings of the NAT_Advanced Study Institute, August

1985

5Basili, V. R., and R. Selby, "comparing the Effectiveness of Software Testing Strate-

_es," IEEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies

in Software Engineering," Reliability Engineering and System Safety, January 1991

4Basili, V. 1L, R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software

Engineering,"/EEE Transactions on Software Engineering, July 1986

2Basili, V. 1L, R. W. Selby, and T Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering

Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engi-

neering Data," IEEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objec-

lives," Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"

Proceedings of the Software L_fe Cycle Management Workshop, September 1977

1Basifi, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-

tory," Proceedings of the Second Software Life Cycle Management Workshop, August

1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics

in the local Environment," Computers and Structures, August 1978, vol. 10

BI-8

SEL-92-004 page 428

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,"

Proceedings of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Imple-

mentation Concepts," Proceedings of Tri-Ada 1991, October 1991

l°Booth, E. W., and M. El Stark, "Software Engineering Laboratory Ada Performance

Study_Results and Implications," Proceedings of the Fourth Annual NASA Ada User's

Symposium, April 1992

1°Briand, L. C., and V. R. Basili, '_ Classification Procedure for the Effective Manage-

ment of Changes During the Maintenance Process," Proceedings ofthe 19921EEE Con-

ference on Software Maintenance (CSM 92), November 1992

1°Briand, L. C., V. R. Basili, and C. J. Hetmanski, "providing an Empirical Basis for

Optimizing the Verification and Testing Phases of Software Development," Proceed-

ings of the Third IEEE International Symposium on Software Reliability Engineering

(ISSRE 92), October 1992

9Briand, L. C., V. R. Basili, and W. M. Thomas,A Pattern RecognitionApproachfor Soft-

ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,

May 1991

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Aria-
Oriented Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"
Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estima-
tion," Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N., "A Software Technology Evaluation Program," Annais do XVIII

Congresso Nacional de Informatica, October 1985

5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," Journal

of@stems and Software, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of

Systems and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, '_n Empirical Study of Software Design

Practices," IEEE Transactions on Software En_ng, February 1986

BI-9

SEL-92-004 page 429

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, '_ Software Engineering

View of Flight Dynamics Analysis System," Parts I and 1I, Computer Sciences Corpora-

tion, Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"

Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D.N., E E. McGarry, and G.T. Page, "Evaluating Software Engineering

Technologies," IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and E E. McGarry, "Criteria for Software Modularizatien,"

Proceedings of the Eighth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-

neering Methodologies," Proceedings of the Fifth International Conference on Software
En#neering. New York: IEEE Computer Society Press, 1981

4Church, V.E., D.N. Card, W.W. Agresti, and Q. L. Jordan, '_m Approach for

Assessing Software Prototypes," ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Mom'toring Software Development Through

Dynamic Variables," Proceedings of the Seventh International Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of

Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada

Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

5Jeffery, D. R., and V. Basili, Charactoizing Resource Data: A Model for Logical

Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Pro-
ceedings of the Tenth International Conference on Software Engineering, April 1988

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,

University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications," Proceedings of
the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, E E., and W. W. Agresti, "Measuring Ada for Software Development in the

Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

BI-10

SEL-92-004 page 430

7McGarry, E, L. Esker, and IC Quimby,"Evolution ofAda Technology in a Production
Software Environment," Proceedings of the Sixth Washington Ada Symposium

(WADAS), June 1989

3McGarry, E E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product," Proceedings of the
Hawaiian International Conference on @stem Sciences, January 1985

3page, G., E E. McGarry, and D. N. Card, "A Practical Experience With Independent
Verification and Validation," Proceedings of the Eighth International Computer Software

and Applications Conference, November 1984

5Ramsey, C. L., and V. R. Basili, "An Evaluation of Expert Systems for Software Engi-
neering Management," 1EEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, '_malyzing the Test Process Using Structural Coverage,"
Proceedings of the Eighth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., '_ Controlled Experiment on the Impact of Software Structure on

Maintainability," IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,
March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth

Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An
Industrial Case Study," Proceedings From the Conference on Software Maintenance,

September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis

for Generating Customized SE Information Bases," Proceedings of the 22nd Annual

Hawaii International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical

Report TR-2252, May 1989

l°Rombach, H. D., B. T Ulery, and J. D. Valett, "Toward Full Life Cycle Control:

Adding Maintenance Measurement to the SEL," Journal of Systems and Software,

May 1992

6Seidewitz, E., "Object, Oriented Programming in Smalltalk and Ada," Proceedings

of the 1987 Conference on Object-Oriented Programming Systems, Languages, and

Applications, October 1987

BI-11

SEL-92-004 page 431

5Seidewitz, E., "General Object-Oriented Software Development: Background and

Experience," Proceed/ngs of the 21st Hawaii International Conference on System

Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life

Cycle Approach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-0riented Programming Through Type Extension in Ada 9X,"

Ada Letters, March/April 1991

10Seidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters,

March/April 1992

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Develop-

ment Methodology," Proceedings of the First International Symposium on Ada for the

NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, '_m Object-Oriented Approach to Parameterized Soft-

ware in Ada," Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the

Seventh Washington Ada Symposium, June 1990

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"

Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifeeycle,"

Proceedings of the Joint Ada Conference, March 1987

10Straub, R A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Soft-

ware Specification Process," Proceedings of the Sixteenth International Computer Soft-
ware and Applications Conference (COMPSA C 92), September 1992

8Straub, R A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for
Ada," Proceedings of the Tenth International Conference of the Chilean Computer Science

Society, July 1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Manage-

ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,

July 1989

10T'mn, J., A. Porter, and M. V. Zelkowitz, '_n Improved Classification Tree Analysis of

High Cost Modules Based Upon an Axiomatic Definition of Complexity," Proceedings

of the Third IEEE International Symposium on Software Reliability Engineering

(ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASAISEL Software Develop-

ment Data, Data and Analysis Center for Software, Special Publication, May 1981

BI-12

SEL-92-004 page 432

l°Valett, J. D., "Automated Support for Experience,Based Software Management,"

Proceedings of the Second Irvine Software Symposium (ISS '92), March 1992

5Valett, J. D., and E E. McGar_, '9, Summary of Software Measurement Experiences
in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

3Weiss, D.M., and V. R. Basili, "Evaluating Software Development by Analysis of

Changes: Some Data From the Software Engineering Laboratory," IEEE Transactions

on Software Engineering, February 1985

5Wu, L., V. R. Basili, and IC Reed, '_ Structure Coverage Tool for Ada Software Sys-
tems," Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Pro-

ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

2Zelkowitz, M.V., "Data Collection and Evaluation for Experimental Computer

Science Research," Empirical Foundations for Computer and Information Science (Pro-

ceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Pro-

ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the

ACM, June 1987

6Zelkowit_ M. V., "Resource Utilization During Software Development," Journal of

Systems and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With

Syntax Editors," Information and Software Technology, April 1990

BI-13

SEL-92-004 page 433

NOTES:

OThis document superseded by revised document.

1This article also appears in SEL-82-004, Collected Software Engineering Papers:

Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Software Engineenng Papers:

Volume 1I, November 1983.

3This article also appears in SEJ._85-003, Collected Software En_neermg Papers:

Volume HI, November 1985.

4This article also appears in SEZ,-86-004, Collected Software Engineenng Papers:

Volume IV,, November 1986.

5This article also appears in SEL-87-009, Collected Software En_neermg Papers:

Volume V,,November 1987.

6This article also appears in SEL_88-002, Collected Software Engineenng Papers:
Volume VI, November 1988.

7This article also appears in SE_89-006, Collected Software Engineenng Papers:

Volume VII, November 1989.

8This article also appears in SEL-90-005, Collected Software Engineenng Papers:

Volume VIII, November 1990.

9This article also appears in SEL-91-005, Collected Software Engineering Papers:

Volume IX, November 1991.

10This article also appears in SEL-92-003, Collected Software Engineering Papers:

Volume X, November 1992.

SEL-92-004 page 434

BI-14

